It has been a bit more than two week since my last posting. I just wanted something solid enough to show before doing it again :). Because one image is better than a 1000 words. This is the state of my project till now:
In green color is what it is finished and working (obvious...) and in pink what it is partially finished. Red stuff is not working at all.
ILUTP implementation:
As I did with ilu0 function, I started the implementation of ilutp using the IKJ variant of the Gaussian elimination as prof. Saad does in his book. For working efficiently with CCS(column compressed storage) structure of sparse matrices it is only needed a transposition before and after the process. So I came up with a working version without pivoting using this strategy a week before this post (src/ilutp_crs.cc file in the repository). All OK till that point. Well ... it was not all OK. When pivoting comes into play, all get messy. It is not feasible to do row-pivoting efficiently after transposing the matrix and using the CCS structure with the IKJ algorithm. What I realized is that Matlab, by default, implements for milu="col" and milu="off" options a JKI variant of the algorithm. This way row- pivoting can be used and no transposition is needed using the CCS structure. So for the whole last week I had to almost rewrite entirely the function to implement it in the JKI way. That was a serious delay because I was not familiar with that variant. On the other hand I also got to the conclusion that milu="row" option demands a IKJ implementation with column pivoting. It can be infer from the documentation:
"....When SETUP.milu == 'row', U is a column permuted upper triangular factor. Otherwise, L is a row-permuted unit lower triangular factor."
Column pivoting means that if CCS is used as storage structure (Octave does), the strategy must be to [transpose - perform IKJ algorithm with column pivoting - transpose again]. So it is needed another implementation. That is the reason milu="row" is not working with ilutp. I had no time to implement that variant with pivoting. However, I have half way traversed because of my early IKJ implementation. So I am working on it.
I am taking special care to output exactly the same as Matlab, that means figuring out some nuances of their implementation that can only be understood after trial and error experimentation with their ilu version. I tried to test intensively the function and for my test cases my version outputs the same as Matlab's.
I have integrated the ilu0 and ilutp function inside a m-file wrapper called ilu.m located in the root directory of the repository. The file was written last year by Kai and need to be changed a bit. But for now it is OK to provide a user-friendly interface to try my functions. Use it the same way as you were in Matlab.
A quick script to test it could be:
A = sprand(100, 0.5);
setup.thresh = 0.4;
setup.droptol = 0.005;
setup.type = 'ilutp';
[L, U, P] = ilu(a, setup);
To get the code pull from here:
https://edu159@bitbucket.org/edu159/gsoc2014-edu159
Just execute make in the root directory and then open the Octave interpreter inside it too.
For the next week I am planning to finish the implementation for the milu option in both ilu0 and ilutp. (You can find the files as src/ilutp.cc and src/ilu0.cc in the project directory)
P.D: For who cares about performance ( I do), my version is a bit faster than Matlab's. You can try it for big matrices. I did, and for low values of droptol (means few terms of the matrix will be dropped), using pivoting and relatively big matrices (5000x5000) my version lasted around 200 secs and Matlab 220 secs. For a 2000x2000 one, the times were 19secs Matlab's, 13 secs mine. The numbers are just for you to get an idea. But they are good news.
See you!
No comments:
Post a Comment